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Abstract
Information extraction (IE) aims to produce structured infor-
mation from an input text, e.g., Named Entity Recognition and
Relation Extraction. Various attempts have been proposed for
IE via feature engineering or deep learning. However, most
of them fail to associate the complex relationships inherent in
the task itself, which has proven to be especially crucial. For
example, the relation between 2 entities is highly dependent
on their entity types. These dependencies can be regarded as
complex constraints that can be efficiently expressed as log-
ical rules. To combine such logic reasoning capabilities with
learning capabilities of deep neural networks, we propose to
integrate logical knowledge in the form of first-order logic
into a deep learning system, which can be trained jointly in an
end-to-end manner. The integrated framework is able to en-
hance neural outputs with knowledge regularization via logic
rules, and at the same time update the weights of logic rules
to comply with the characteristics of the training data. We
demonstrate the effectiveness and generalization of the pro-
posed model on multiple IE tasks.

Introduction
Information extraction (IE) involves the identification of im-
portant information from a piece of input text and is a fun-
damental step towards knowledge inference. Various prob-
lems can be categorized as IE tasks, e.g., Named Entity
Recognition (NER), Entity Linking, Opinion Target Extrac-
tion (OTE), Relation Extraction (RE), etc. In this work, we
target at 2 challenging IE tasks including OTE and end-to-
end RE. Given an input text, end-to-end RE aims to extract
target entities as well as entity relations (Li and Ji 2014). For
example, given the sentence “Rome is in Lazio province and
Naples in Campania”, the task requires the identification of
Rome, Lazio, Naples and Campania as location entities, and
the relation between Rome and Lazio as Located In, same
for the relation between Naples and Campania. The task of
OTE aims to identify opinion targets within an opinionated
text (Hu and Liu 2004), e.g., service staff in “The service
staff in this restaurant is very kind”.

Deep neural networks (DNNs) have been widely used
for various IE tasks. Existing works adopted convolutional
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neural networks (Xu et al. 2018a; Adel and Schütze 2017)
and recurrent/recursive neural networks (Wang et al. 2016;
Miwa and Sasaki 2014) to learn context-aware and high-
level features to facilitate predictions. Pointer networks have
also been proposed for relation extraction (Katiyar and
Cardie 2017). Despite their advantage over low-level feature
engineering, the complex networks make learning harder
when the amount of training data is insufficient, which is the
case for many IE tasks. Moreover, the automation in DNNs
makes it challenging to inject prior knowledge to guide the
training process. On the opposite, symbolic logic systems
provide an effective way to express complex domain knowl-
edge in terms of logic rules and have proven to be advanta-
geous when data is scarce. Inspired by the cognitive process
that learns from both experiences and background knowl-
edge, recent years have witnessed a growing interest in com-
bining deep learning with logic reasoning (Manhaeve et al.
2018; Dong et al. 2019) mostly for solving logical problems.

To enhance the extraction performance in the NLP do-
main, we propose to incorporate domain knowledge as logic
rules that are integrated into the representation learning sys-
tem through a unified framework. The proposed model con-
sists of a deep learning module as well as a logic mod-
ule, where the deep learning module contains a transformer-
style neural network to learn a rich feature representation
for each word. The transformer model computes complex
word-level correlations in multiple dimensions regardless
of context distance (Vaswani et al. 2017), and has shown
promising results in several NLP tasks, e.g., semantic role
labeling (Tan et al. 2018). We believe this mechanism could
be more beneficial to propagate information between related
entities, compared to other deep models. The multi-head at-
tention weight indicate the interactions between each pair of
words which can be further fed into a relation classifier. The
logic module is composed of a set of logic rules represented
by First-order Logic (FOL). These rules explicitly specify
the complex relationships in the output label space, which
could not be handled using simple constraints. For example,
a FOL rule, Live In(Z,X) ∧ person(Z)⇒ location(X),
specifies that if the relation between two entities is Live In
and the first entity is of type person, then the second entity
should have type location.



To associate distributed features with logic reasoning, we
integrate the deep learning module and the logic module
through 2 operations: 1) We design some mapping func-
tions such that the information from the neurons could be
passed to the logic system. Specifically, the neural outputs
are treated as the inputs to the logic module, which com-
bined with probabilistic logic operators, produces the logic
outputs. Hence the outputs from the logic module reflects
both neural learning and logic interactions among corre-
lated atoms. Furthermore, a learnable weight is assigned to
each logic rule to indicate its confidence level. The learn-
able weight for each rule makes the logic system more flexi-
ble and adaptable to specific training dataset, where a higher
weight makes the corresponding rule more important within
the corpus. 2) A discrepancy loss is proposed to measure
the disagreement between the deep learning module and
the logic system, which is minimized to allow for regular-
ization of DNNs via logical knowledge. The discrepancy
loss prompts the update of neural parameters towards rule-
constrained directions, and at the same time adjusts the rule
weights to be compatible with specific corpus.

To summarize, the proposed framework has the follow-
ing contributions: 1) We use transformer mechanism for IE
tasks to fully exploit interactions among the input space,
which is also indicative for relation predictions. 2) We use
logic rules to enforce complicated correlations in the out-
put space and integrate these rules into the distributed rep-
resentation learning system with a joint learning mechanism
to achieve joint inference. To the best of our knowledge,
this is the first work for information extraction that unifies
DNN with logic knowledge in a rather smooth way to bene-
fit learning of each other. 3) We introduce a general frame-
work for knowledge fusion through discrepancy minimiza-
tion, which can be adopted in various DNN models. We also
demonstrate its effectiveness on different IE tasks.

Related Work
Information Extraction Various approaches have been pro-
posed for entity and relation extraction, either through a
pipeline procedure, or a joint inference framework. The
pipeline strategy first learns an entity extraction model and
then independently predicts relations based on the extracted
entities (Chan and Roth 2011; Lin et al. 2016). This strategy
suffers from error propagation. To solve this problem, joint
inference is proposed to learn shared information between
two subtasks by sharing parameters (Miwa and Bansal 2016;
Katiyar and Cardie 2017; Bekoulis et al. 2018b; 2018a) and
adopting novel tagging scheme to further model task interac-
tions (Roth and Yih 2004; Li and Ji 2014; Miwa and Sasaki
2014; Gupta, Schütze, and Andrassy 2016; Zheng et al.
2017; Zhang, Zhang, and Fu 2017; Adel and Schütze 2017;
Sun et al. 2018; Wang et al. 2018; Dai et al. 2019).

For opinion target extraction, existing works either used
pre-defined rules/features to identify the targets (Hu and Liu
2004; Qiu et al. 2011; Li et al. 2010), or applied deep learn-
ing models with sequence labeling strategy (Yin et al. 2016;
Wang et al. 2016; 2017; Li and Lam 2017; Xu et al. 2018a).
However, DNNs only implicitly exploit the input interac-
tions, without controlling what is learned. Yu, Jiang, and

Xia (2019) used integer linear programming with explicit
constraints for joint inference as a post-processing step.
Deep Learning with Logic Rules The combination of neu-
ral learning systems with symbolic rules has long since
been proposed, known as neural-symbolic systems (Garcez,
Broda, and Gabbay 2012; Manhaeve et al. 2018; Dong et
al. 2019; Sourek et al. 2018) that construct a network or
connect the distributed systems with given rules for rea-
soning and inference in logic domains. Xu et al. treated
logic knowledge as semantic regularizsation in the loss func-
tion. The injection of logic rules in NLP tasks was re-
cently proposed in (Rocktäschel, Singh, and Riedel 2015;
Guo et al. 2016) for relation and knowledge graph learning
that embed logic into the same space as distributed features
in a single system. Hu et al. (2016) fused logical knowledge
into deep models through posterior regularization. Logic
rules were also used as evidences to construct adversarial
sets (Minervini et al. 2017; Minervini and Riedel 2018), or
as a form of indirect supervision (Wang and Poon 2018) to
improve model training. Li and Srikumar (2019) augmented
deep learning models with logic neurons. In this work, we
propose to combine DNN with logic in a smooth way, which
adopts probabilistic logic instead of 0/1 hard assignments to
facilitate backpropagation through the whole framework. In-
stead of inserting logic within the DNN architecture, we use
a discrepancy loss to progressively bridge the gap between
deep learning and logic rules.

Problem Definition & Motivation
We use end-to-end RE, which aims to jointly extract enti-
ties and their relations, as a motivating task to describe our
proposed method. Denote by E and R the set of possible
entity types and relation categories, respectively.1 Given an
input sentence {w1, w2, ..., wm}, entity extraction involves
both entity segmentation as well as entity typing. We use
BIO encoding scheme combined with entity types to form
the sequence of output labels y = {y1, y2, ..., ym}, where
yi ∈ {B-Ej , I-Ej ,O}Ej∈E . For example, B-PER (I-PER) in-
dicates the beginning (inside) position of an entity of type
person. Relation extraction aims to output a set of triplets
(e1, e2, r), where e1 and e2 represents the first and second
entity, respectively, and r ∈ R indicates the relation type
between them. In this work, we treat entity extraction as a
sequence labeling problem and relation extraction as a clas-
sification problem based on the identified entities.

A key motivation behind our proposed method is the com-
plex correlation inherent both in the input and output spaces.
In the input space, there exist intensive interactions among
entities within a sentence to facilitate information propaga-
tion. For example, if Rome is extracted as a location entity
and has close relationship with Lazio, it may help to identify
Lazio as another entity. To exploit these interactions, we use
the transformer mechanism with multi-head self-attentions
to generate a correlation factor for each pair of words, which
is injected for both entity and relation predictions. However,
DNNs can only implicitly capture some correlations with-

1Note that the task of OTE can be regarded as a special case of
RE, where there is only one entity type.
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Figure 1: The overall architecture.

out actually enforcing specific relationships. For example,
if we know that one of the entities is of type person and
the relations between the entities is Live In, the other entity
should be of type location. Even within entity predictions,
there also exists dependencies enforcing possible positions
within an entity, e.g., label “O” cannot be followed by “I”.
These relationships are especially crucial for the task, and
yet few existing works have taken them into account. Al-
though sequence labeling models, like Conditional Random
Fields (CRFs) (Lafferty, McCallum, and Pereira 2001), are
able to encode certain segmentation rules implicitly, they
may not learn the optimal strategy when there is insufficient
training data. Furthermore, they fail to model more com-
plex relational rules. A few works treat the complex rela-
tionships among objects as constraints within the objective
function. However, it is non-trivial to express those com-
plex constraints, and the resultant optimization is challeng-
ing. Moreover, the constraints cannot be updated to align
with the training corpus. In the literature, symbolic logic
rules are well-known to be effective at modeling complex
semantic relationships. For example, a dependency between
entity types and relations can be expressed using FOL as
person(X) ∧ Live In(X,Z) ⇒ location(Z). When the
training data is insufficient, as is the case for IE, logic rules
provide crucial clues to assist learning.

Compared with the pipeline approach which is prone to
error propagation, joint inference on related tasks, e.g., en-
tity recognition and relation classification, has shown to be
effective for (end-to-end) information extraction. Though
joint learning has been proposed in deep architectures, most
existing models fail to explicitly enforce the consistency
among separate tasks. To address this problem, it is desir-
able to integrate logic rules specifying task relationships for
joint inference. At this point, we propose to unify deep learn-
ing with logic rules in an end-to-end learning framework.
To align discrete symbolic system with distributed repre-
sentation learning, we propose to compute logic rules in a
probabilistic way and define mapping functions to map the
continuous output from a DNN to the logic units. Further-
more, a discrepancy loss is proposed that measure the dis-

crepancy between the DNN outputs and the logic outputs to
make these two modules consistent with each other. The dis-
crepancy loss is able to regularize the DNN through domain
knowledge, and at the same time update the logic module to
comply with the training data.

Methodology
The overall architecture of the proposed method is shown in
Figure 1. It consists of 3 components, namely a deep neu-
ral network, a logic bank and a discrepancy unit. The DNN
component takes a sequence of words as the input and fi-
nally produces a prediction vector for each word (and possi-
bly candidate relations). The logic bank is fed with general
domain knowledge that is easy to obtain and formalizes the
knowledge as a set of first-order logic rules. Note that we as-
sign a non-negative weight to each logic rule to indicate its
confidence level which is updated according to the training
corpus. The output from DNN is fed into the logic module
to produce logic output. The discrepancy unit is responsi-
ble for aligning neural outputs with outputs from the logic
bank. Specifically, we compute a distance between the out-
put distributions from DNN and logic module with the aim
to minimize the distance throughout the learning process.

First-Order Logic
FOL is formed from constants, variables and predicates
with propositional connectives ∧, ∨, ¬ and quantifiers. To
avoid confusion, we use upper-case letters (A) to represent
variables and lower-case letters (a) to represent constants.
An atom is an n-ary predicate with n arguments (R(A,B)).
A ground atom assigns constants to all of its arguments
(R(a, b)). A clause can be written in the form of a rule:
B1∧ ...∧Bk ⇒ H , where H is called the consequent of the
rule and B1 ∧ ... ∧ Bk is the precondition. The grounding
of a clause is a substitution that maps each occuring variable
in the clause to a constant: B1(φ) ∧ ... ∧ Bn(φ) ⇒ H(φ),
where φ denotes a substitution. A Herbrand interpretation
is a mapping that assigns a truth value to each ground atom.
To make it a Herbrand model, all the logic formulas should
be satisfied. To find a Herbrand model, a feasible method
is through the immediate consequence operator, which is a
mapping Tp from Herbrand interpretation to itself:

Tp(I) = {H(φ)| (B1 ∧ ... ∧Bn ⇒ H) ∈ P,
{B1(φ), ..., Bn(φ)} ∈ I}, (1)

where I is a Herbrand interpretation, P is a set of clauses.
Given known grounded atoms, we can find other grounded
atoms as immediate consequences of the logic formulas. In
our formulation, we use neural networks to simulate the
immediate consequence operator and applies probabilistic
logic where each formula is assigned a confidence score
and each grounded atom has a continuous truth value within
[0, 1] to indicate its probability of being true.

Deep Learning Module
The deep learning component is modeled as a transformer-
style network consisting of multiple layers of self-attentions
and Bi-GRU in order to model both sequential and distant
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Figure 2: Deep learning module with transformer.

dependencies. A concrete structure is shown in Figure 2.
Specifically, given a sequence of input words, we first con-
struct an input embedding xi = [xei : xpi ] for each word
by concatenating its pre-trained word embedding xei and its
associated POS-tag embedding xpi . To incorporate sequen-
tial context interactions, a Bi-GRU model with parameters
Θ is firstly applied on top of xi to generate hidden represen-
tations hi by considering both forward and backward infor-
mation. Mathematically, we denote this process by

hi=[
−→
h i :
←−
h i]=[f(xi,

−→
h i−1; Θ) : f(xi,

←−
h i+1; Θ)],

where
−→
h i and

←−
h i indicate the forward and backward GRU

output, respectively.
Subsequently, hi is further fed into a transformer model

consisting of multiple layers, where each layer stacks a Bi-
GRU network on top of a multi-head self-attention module.
Specifically, the self-attention network transforms its input
hti at t-th layer to h̃ti via a series of attention mechanism.
For ease of illustration, we drop the superscript t in the se-
quel. Mathematically, given a query vector corresponding to
an input vector hi, each attention head computes one type
of interactions between itself and other positions within the
sequence and produces a transformed hidden representation:

h̃ci =

m∑
j=1

αcij(W
c
vhj), and (2)

αci = softmax(
(Wc

qhi)(W
c
kH)

√
d

), (3)

where H is a matrix consisting of hi as column vectors,
and d is the dimension of hi. {Wc

v,W
c
q,W

c
k} are trans-

formation matrices corresponding to the c-th attention head.
We define C different transformations for multi-head mech-
anism, where each transformation accounts for one repre-
sentative interaction space. For IE, each head is regarded as
computing a different relation between 2 words. A final hid-
den vector is produced via h̃i=W[h̃1

i : ... : h̃Ci ].
Denote the final feature representation after applying Bi-

GRU in the last transformer layer T as hT . The neural out-

puts for entity prediction yE are generated through a fully-
connected layer followed by a softmax layer:

sEi = tanh(WE
h [hTi : xli−1] + bEh ), (4)

p(yEi |x) = softmax(WE
y s

E
i + bEy ), (5)

where xli−1 denotes the entity label embedding of the previ-
ous token. The injection of label embeddings implicitly in-
forms entity label dependencies. Similarly, the relation pre-
diction yR is produced for each pair of extracted entities via

sRi,j = tanh(WR
h [vi :vj :αi,j :αj,i] + bRh ), (6)

p(yRi,j |x, E) = softmax(WR
y s

R
i,j + bRy ), (7)

where vi = [hTi : xli], E indicates the set of extracted enti-
ties, and αi,j represents the multi-head attention weight vec-
tor betweenwi andwj . The attention vectors contain explicit
correlation information that could assist relation prediction,
as will be verified later in experiments.

Logic Fusion via Discrepancy Loss
As discussed, the DNN module introduced in the previous
section is able to exploit word-level interactions implicitly
via feature learning, but fails to consider more complex re-
lationships among outputs. For example, the relationship be-
tween entity types and their relations, which are non-trivial
to be injected into DNNs, but can be effectively formulated
as logical rules. We construct 2 types of FOLs to specify the
relationships among entity and relation labels. The first type
focuses on the dependencies of segmentation labels, denoted
by segb(Z)⇒ sega(X), which means if the segmentation
label for variable Z is b, the segmentation label for vari-
able X is deduced as a, with a, b∈{B, I, O}. An example
is segB(wi)⇒segO(wi−1) that enforces the previous word
to have label O when the current word is the beginning of
an entity. The second rule models the correlations between
entity types and relations, e.g., entityc(X) ∧ rell(X,Z)⇒
entityd(Z), which means relation l only appears when the
first and second entity has type c and d, respectively.

To make logic rules compatible with DNN outputs, we
adopt probabilistic logic where each atom is assigned a con-
tinuous value in [0, 1] and convert Boolean operations to
work on probabilistic units. Hence, we define the following:

Definition. A mapping Γ from the language of FOL L to
the continuous space R (Γ : L → R) is defined as follows,

• Γ(P ) = y(P ) with P representing a grounded atom and
y as the neural output. For example, Γ(entityc(wi)) =
yEi [c], where c indicates the index of the entity type. This
can be interpreted as: the probability for wi belonging to
entityc equals to its corresponding neural output yEi [c].

• Γ(P1 ∧ ... ∧ Pn) = σ(a0(
∑n
i=1 Γ(Pi)− n) + b0).

• Γ(P1 ∨ ... ∨ Pn) = σ(a1

∑n
i=1 Γ(Pi) + b1).

• Γ(¬P ) = 1− Γ(P ).

Here σ indicates the sigmoid activation function. The last
3 mappings are able to approximate the semantics of logic
operators according to (Sourek et al. 2018). With these map-
ping functions, we compute a soft-version of the immediate



consequence operator using (1) to produce the output YL
from the logic module. Specifically, the value of the conse-
quent atom H(φ) in each rule is deduced by applying Γ on
the rule body B(φ), given a grounded clause B(φ) ⇒ H(φ),
where B(φ) denotes the conjunction B1(φ) ∧ ... ∧Bn(φ).

YL(H(φ)) = Γ(B1(φ) ∧ ... ∧Bn(φ))

= σ(a0(

n∑
i=1

Γ(Bi(φ))− n) + b0)

= σ(a0(

n∑
i=1

y(Bi(φ))− n) + b0). (8)

A detailed procedure to produce logic output is shown in
Algorithm 1. Given neural outputs {yEi }mi=1 in (5) and
{yRl }m

′

l=1 in (7) for each sentence, and a set of rules {B(k)⇒
H(k)}Kk=1, the logic system produces a logic output uEi,k for
each word and uRl,k for each relation corresponding to each
rule rk as following: For each rule B(k)⇒H(k), we find its
satisfying groundings φ forB(k) from neural predictions and
generate the logic output YL(H

(k)
(φ)) for its consequent atom

H
(k)
(φ) using (8). For example, given the rule entityc(X) ∧

rell(X,Z) ⇒ entityd(Z), if the neural model predicts
wi as entityc and the relation between wi and wj as rell,
(X = wi, Z = wj) is regarded as a satisfying grounding.
Then the logic output for the consequent atom entityd(wj)
will be produced as σ(a0(yEi [c] + yRi,j [l] − 2) + b0). We
use Φk and Γk to collect the deduced consequent groundings
and their logic values, respectively. The final logic output for
each word uEi,k (relation uRl,k) for each rule rk is obtained by
aggregating the logic values across all the situations when
acting as a consequent atom.

By making the DNN and the logic module compatible
with each other, we can measure their discrepancy `D(F ,L)
by comparing the distributions of their outputs:

`D(F ,L) = Ex∼X (d(YF (x), YL(x))),

=
1

K

∑
{B(k)⇒H(k)}

1

|Φk|
∑
φ∈Φk

βkd(y(φ),uk(φ)), (9)

where YF (x) and YL(x) denote the neural output and
logic output, respectively. Φk collects the consequent atoms
whose precondition is satisfied. We further assign a confi-
dence weight βk ∈ [0, 1] for each rule to indicate its confi-
dence and adjust its contribution to the discrepancy loss. The
higher the weight, the more penalty to be given when neural
outputs disagree with logic outputs. We use Mean-Squared-
Error as the distance metric d(·, ·), because it provides a bet-
ter gradient flow for a more stable training process.

Training
The integrated model can be trained end-to-end with gradi-
ent descent by minimizing ` = `Y + `D, where `Y is the
prediction loss for the deep learning model. Here we use
cross-entropy loss for both entity and relation predictions:

`Y =− 1

N

N∑
n=1

(log p(ŷEn |xn)+log p(ŷRn |xn, En)), (10)

Algorithm 1 Deep Logic

Input: Neural softmax outputs {yEi }mi=1 (entities) and {yRl }m
′

l=1

(relations) for each sentence.
Output: {uEi,k}m,Ki=1,k=1 (entities) and {uRl,k}m

′,K
l=1,k=1 (relations)

Initialize: uEi,k = 0, uRl,k = 0 for i ∈ {1, ...,m}, l ∈
{1, ...,m′}, k ∈ {1, ...,K}.
Collect feasible groundings of rule head and rule body.
for each rule rk : B(k) ⇒ H(k) do

1: Initialize Φk = {}, Γk = {}
2: Find a grounding φ such that each B(k)

j(φ) in B(k)

(φ) is true

according to neural predictions {yEi }mi=1, {yRl }m
′

l=1

3: Update Φk ← Φk ∪ {H(k)

(φ)}, Γk ← Γk ∪ {YL(H
(k)

(φ))}
end for
Compute logic output for rule heads
for k from 1 to K do

Initialize cEi = 0 for i ∈ {1, ...,m}, cRl = 0 for l ∈
{1, ...,m′}
for (φ, γ) ∈ (Φk,Γk) do

Return the exact word wi or relation rl that corresponds to
grounding φ
Update uEi,k← uEi,k+γ, cEi ← cEi +1 or uRl,k← uRl,k+γ,
cRl ←cRl +1

end for
uEi,k ← uEi,k/c

E
i , uRl,k ← uRl,k/c

R
l

end for

where p(ŷEn |xn) =
∏|sn|
i=1 p(y

E
i = ŷEi |xn) using (5). |sn|

indicates the length of the nth sentence. Similar procedure
applies to p(ŷRn |xn, En) using (7). En denotes the set of ex-
tracted entities for the n-th sequence. The backpropagation
procedure is revealed in Figure 1 via (dashed) downward ar-
rows. Specifically, the discrepancy loss updates both neu-
ral and logic outputs, together with rule weights accord-
ing to (9) through gradient descent. To restrict the logic
weights within [0, 1], we apply a sigmoid function such that
βk = σ(β′k). Then the gradient of the logic weight becomes

∂`D
∂β′k

=
1

K|Φk|
∑
φ∈Φk

dσ(β′k)(1− σ(β′k)), (11)

where d = d(y(φ),uk(φ)). The gradients for logic output
uk(φ) is further passed back to neural logits y(B(φ)) ac-
cording to (8), which combined with the classification loss,
updates all the parameters within the neural model. Ideally,
the discrepancy loss will punish the situation when the neu-
ral output highly differs from the logic output. In this case,
the deep model will modify its network to be more aligned
with the logic rules. On the other hand, the logic module will
adapt its weights as well as the mappings that are passed
back to the neurons. For example, if the deep module pre-
dicts Rome as location, Lazio as location and their rela-
tion as OrgBased In (which is wrong). When feeding them
into the rule loc(Rome)∧OrgBased In(Lazio,Rome)⇒
org(Lazio), the logic output for entityorg(Lazio) will be
high, different from the neural output. In this case, the dis-
crepancy revises its rule body to decrease the incorrect neu-
ral output for relation OrgBased In.



Restaurant14 Laptop14 Restaurant16
(Wang et al. 2016) 84.25 77.26 69.74
(Wang et al. 2017) 84.38 76.45 73.87
(Li and Lam 2017) - 77.58 73.44
(Xu et al. 2018a) 84.24 81.59 74.37
(Yu, Jiang, and Xia 2019) 84.50 78.69 -
TransF 84.64 81.76 73.56
Ours 85.62 82.46 74.67

Table 1: Comparison with baselines on OTE.

Experiment
To demonstrate the effectiveness of our proposed method,
we conduct experiments on 5 datasets from 2 tasks:
OTE: We use Restaurant and Laptop reviews from SemEval
2014 and 2016 (Pontiki et al. 2014; 2016).
End-to-End RE: 1) TREC: entity and relation dataset in-
troduced in (Roth and Yih 2004). It has 4 entity types: oth-
ers, person, location and organization, and 5 relations: Lo-
cated In, Live In, OrgBased In, Work For and Kill. We fol-
low the preprocessing from (Gupta, Schütze, and Andrassy
2016) 2) ACE05: annotated data with 7 coarse-grained en-
tity types and 6 coarse-grained relation types between enti-
ties. We follow the same setting as (Li and Ji 2014).

For the OTE task, we follow the setting in (Wang et
al. 2016) by first pre-training the word embedding using
word2vec (Mikolov et al. 2013) on Yelp Challenge dataset2
and electronic dataset in Amazon reviews3 for restaurant
domain and laptop domain, respectively. For RE task, the
word embedding is pre-trained on wikipedia corpus using
Glove (Pennington, Socher, and Manning 2014). For all ex-
periments, the dimension for word embedding and POS em-
bedding is set to 300 and 50, respectively. The hidden lay-
ers has dimension 200. We set label embedding with di-
mension 25. Following (Vaswani et al. 2017), we also use
positional encoding that is added to the input vectors. The
multi-head self-attentions adopts 10 heads that leads to 10-
dim attention weight vectors. For RE task, we use scheduled
sampling, similar to (Miwa and Bansal 2016). To train the
model, adadelta is adopted with initial rate as 1.0 and with
dropout rate 0.1. For evaluation, we use micro-F1 scores on
non-negative classes. An entity is counted as correct based
on exact match. A relation is correct if both of its entities are
correct and the relation type matches the ground-truth label.

Results & Analysis
Comparison on OTE task: Table 1 shows the comparison
results for opinion target extraction with popular baselines.
The last two rows indicate our proposed models, where
TransF is the deep learning module without logic integra-
tion. Since the OTE task can be viewed as single-class en-
tity extraction, the proposed model can be adapted to this
task by ignoring relation predictions. From the results, we
can observe that even without logic rules, the transformer
model is able to achieve 2-out-of-3 best results compared
to existing works. This proves the effectiveness of trans-
former for implicit interaction modeling. When considering

2http://www.yelp.com/dataset challenge
3http://jmcauley.ucsd.edu/data/amazon/links.html

Setting Model Evaluation Entity Relation

w/ Boundary

(Gupta et al. 2016) relaxed 92.4 69.9
(Bekoulis et al. 2018b) relaxed 93.3 67.0
(Bekoulis et al. 2018a) relaxed 93.0 68.0
(Miwa and Sasaki 2014) strict 92.3 71.0
(Adel and Schütze 2017) strict 92.1 65.3
Pipeline strict 94.1 69.7
Pipeline+feat strict 94.5 70.2
TransF strict 94.6 72.8
Ours (w/o) POS strict 94.3 71.7
Ours strict 95.1 74.1

w/o Boundary

(Miwa and Sasaki 2014) relaxed 80.7 61.0
(Adel and Schütze 2017) relaxed 82.1 62.5
(Bekoulis et al. 2018b) strict 83.0 61.0
(Bekoulis et al. 2018a) strict 83.6 62.0
Pipeline strict 84.2 57.2
Pipeline+feat strict 84.2 58.4
TransF strict 85.8 62.7
Ours (w/o) POS strict 85.0 63.1
Ours strict 87.1 64.6

Table 2: Results of End-to-End RE on TREC.

Settings Models
Res14 Res16 Lap14 TREC ACE05

OTE Entity Relation Entity Relation

Entity
TransF−xl 84.1 72.7 77.6 83.3 - 82.9 -
TransF 84.6 73.6 81.8 84.2 - 83.2 -
TransF+SR 85.0 73.9 82.1 84.9 - 83.2 -

Joint
TransF−α - - - 84.3 60.6 83.3 57.4
TransF - - - 85.8 62.7 83.4 59.1
TransF+SR+RR 85.6 74.7 82.5 87.1 64.6 83.4 59.3

Table 4: Comparisons on different model settings.

logic knowledge, we use segmentation rules that enforces
possible segmentation labels for 2 adjacent words. Further-
more, we also incorporate implicit relational rules that state
entity(X)∧ entity(Z)⇒ related(X,Z). This is achieved
by keeping the relation prediction layer in the deep learn-
ing module. We find this strategy slightly improves our re-
sults which will be shown later. The results also show that
the integration of logic rules is more effective than CRF by
comparing with (Wang et al. 2016). Although Yu, Jiang, and
Xia (2019) incorporated explicit constraints through inte-
ger linear programming, the separation from DNN during
learning makes it suboptimal. This demonstrates the advan-
tage of our unified framework that associates logic reasoning
with representation learning. Clearly, our model achieves the
state-of-the-art results on all 3 datasets.
Comparison on RE task: The comparison results on TREC
is shown in Table 2. Existing works for this domain con-
sists of 2 different settings and evaluations. The first setting
is introduced in (Roth and Yih 2004) that assumes the en-
tity boundaries are given and the task is to predict the en-
tity types and relations. The second setting requires both
segmentation and entity typing. Evaluations include relaxed
version where an entity is regarded as correct if at least one
of its consisting words have the correct type prediction. The
strict version only treats a predicted entity as correct given
a complete match. When boundaries are given, our model
could be easily modified to treat each entity as a single unit
for type predictions. To show the effect of joint inference
with logic rules, we construct a pipeline model by first pre-
dicting entities followed by relation predictions given fixed



(Li and Ji 14) (Miwa and Bansal 16) (Zhang et al. 17) (Sun et al. 18) (Sun et al. 18)G Pipeline Pipeline+feat TransF TransFG Ours OursG
Entity 80.8 83.4 83.5 83.4 83.6 83.2 83.2 83.4 83.5 83.4 83.6
Relation 49.5 55.6 57.5 57.8 59.6 57.4 55.3 59.1 59.1 59.3 59.4

Table 3: Comparison with baselines on relation extraction using ACE2005 dataset.

entity parameters. Another model (Pipeline+feat) further ap-
pends rule-based features as 1-hot vectors for relation pre-
diction. Obviously, the pipeline model achieves inferior per-
formance and simple features are far less expressive than
logic rules. For both settings, our model achieves the best
results with a large margin. Furthermore, we also test our
model without the POS embedding, shown as “Ours (w/o)
POS”, which still demonstrates some performance gain.

Table 3 shows the comparison results on ACE05 dataset.
Note that Sun et al. (2018) used a non-decomposable global
loss with normal local loss to jointly train entity and rela-
tion extraction. We denote by (Sun et al. 18) and (Sun et
al. 18)G the model without and with the global loss, respec-
tively. We also implemented the global loss as a fine-tuning
step in our method, denoted by the subscript G. It is ob-
served that TransF achieves the best result for relation ex-
traction and comparable result for entity extraction without
sophisticated global training strategy. Global loss does not
provide clear benefit for our model. This might indicate that
our model already explores global interactions. (Sun et al.
18)G requires substantial pretraining processes (larger than
500 epochs in our implementation) using the normal loss. As
a comparison, our model is more convenient to implement
and provides faster convergence, as will be shown later. The
logic rules only show slight improvement. We deduce the
reason to be the characteristics of the data. Indeed, there are
very few absolute relationships between entity types and re-
lations. In most cases, two related entity types can have mul-
tiple relation categories, making explicit rules less useful.
Comparison for different model settings: To demonstrate
the effect of each component, we conduct experiments on
different model settings, with the statistics shown in Ta-
ble 4. The objective is to analyze the effect of interactions
within entities themselves, as well as the correlations be-
tween entities and relations. We first remove the relation
prediction component to examine the results for solely en-
tity extraction, denoted as ‘Entity’. We construct 3 differ-
ent settings to compare the results among standard trans-
former model, removing label embedding (TransF−xl), and
integrating only segmentation rules (TransF+SR) with dis-
crepancy loss. As shown, the label embedding slightly im-
proves all the performances which proves its ability to im-
plicitly exploit the segmentation dependencies. However,
more improvements are observed by explicitly incorporating
logic rules. When jointly predicting entities and relations,
we could observe slight improvements upon entity extrac-
tion using transformer. This shows positive correlations be-
tween entities and their relations. For this joint task, we ex-
amine the effect of distributed features (TransF−α) as well
as symbolic rules (TransF+SR+RR) on the final results. By
removing attention weight features, TransF−α achieves in-
ferior results on relation predictions, demonstrating the ad-
vantage of attentions for relation modeling. More significant
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Figure 3: Performance trend comparison on 2 models.

improvement could be observed when incorporating the re-
lationships between entities and relations as explicit rules.
Convergence Comparison: (Sun et al. 18)G requires a great
amount of pre-training epochs using the normal local loss
(at least 500 epochs) for the base model to reach reported
performance. As a comparison, our model with the normal
loss converges much faster, as demonstrated in Figure 3 on
the test data. Compared with (Sun et al. 2018), our model
reaches to a relatively high performance within 20 epochs.
The result for entity extraction has faster convergence rate
compared to relation prediction but stays in a rather stable
state, which is comparable to (Sun et al. 2018) in subsequent
epochs. The relation prediction performance for our model
substantially increases in the first place, while still keeps im-
proving later on. We can observe that within 100 epochs,
our model achieves clear performance gain over (Sun et al.
2018) on relation extraction.

Conclusion
In this work, we propose a novel unified model to asso-
ciate distributed learning with symbolic rules. The integrated
framework is able to pass information from the neural model
to the logic module and compute a discrepancy loss between
these two components, which is minimized to update the
whole network. The marriage between these two systems
could regularize deep learning in the form of knowledge dis-
tillation. On the other hand, the logic system is also updated
in terms of rule weights to adapt to specific data domain. Ex-
perimental results demonstrate the advantage of combining
DNNs and logic for joint inference.
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